
rsbackup decay pruning

Richard Kettlewell

2015-09-12

Abstract

Pruning policies are provided with a collection of backups with ages counted in days. The
decay pruning policy is designed to keep all backups up to a (presumably small) limit and
then thin out any older backups and keep older backups at a rate which decays over time.
This article describes and justi�es the implementation.

Parameters

The policy has the following parameters:
Name Value Description

decay-start p ≥ 0 Age within which to keep all backups

decay-window w > 0 Size of the decay window

decay-scale s > 1 Scaling of the decay window.

decay-limit l > 0 Limit beyond which to keep no backups.

Description

Preliminaries

An initial time window is preserved (i.e. not pruned) by subtracting p and discarding from further
consideration any backup with an age a ≤ 0.

Any backups older than l are pruned unless this would cause there to be no backups left
whatsoever. The presence of a single backup, inside or outside, the initial time window is su�cient
to cause ancient backups to be pruned.

Decay Buckets

With these two issues dealt with, the remaining backups are organized into buckets Bn of size wsn

for integer n ≥ 0. This is illustrated as follows:

a ∈ Bn ⇐⇒

0 <a ≤ w (n = 0)

w <a ≤ w + ws (n = 1)

w + ws <a ≤ w + ws+ ws2 (n = 2)

...

In general,
a ∈ Bn ⇐⇒ Rn−1 < a ≤ Rn

where:

Rn = w

n∑
i=0

si =
w(sn+1 − 1)

s− 1

1

so:

Rn < a ≤ Rn ⇐⇒ sn <
(s− 1)a

w
+ 1 ≤ sn+1

⇐⇒ n < logs

(
(s− 1)a

w
+ 1

)
≤ n+ 1

⇐⇒ n =

⌈
logs

(
(s− 1)a

w
+ 1

)⌉
− 1

Having done this, for any bucket containing more than one backup, all backups except for the
oldest are pruned. The reason that the oldest is kept rather than the newest is that otherwise a
volume that was reliably backed up daily would never have any backups survive into B2 (or even
B1 if w > 1).

2

