
DisOrder Cookie-Based Web Login Design
DisOrder Cookie-Based Web Login Design

Introduction
Cookie Protocol

Signed Cookies
Key Rollover

User Management
New users Database
User Rights
Default Rights
Upgrading
Special Users

New Commands
adduser
deluser
edituser
userinfo
register
confirm
reminder
make-cookie
cookie
revoke
users

Web Interface
Guest Operation
Logged-In Operation

Introduction

This is the design for DisOrder's switch to a cookie-based login system.

We don't like HTTP basic authentication because:
the browser UI as specified and implemented is awful

you get to display one string to the user
you can't log out

authentication is mandatory: there is no facility for a "guest" user with reduced capabilities
you need a separate htpasswd file

Cookie Protocol

Rather than store any session state in the CGI or server we keep it all in a signed cookie. Keys are stored in the
DisOrder server (with its private UID/GID) and are not available to the CGI (which may well share a UID with
other CGI programs).

Signed Cookies

The signing is done by the server, not the CGI: once the CGI has logged in as a user (in the normal way) it
retrieves a cookie from the server and on subsequent requests offers that in place of the normal login protocol.

Let:
K be the long-term signing key, stored only in the server
T be the expiry timestamp, in hex. This will be a configurable amount of time in the future.
U be the username (which must not have a "$" in it)
P be U's password

Then:
B = T + "$" + U + "$"
g = base64(HMACSHA1(K, B + P))
c = b + g

So the resulting cookie will look like timestamp$username$signature.

To verify a cookie c':
Check that c' has not been revoked
Split c' into T'U'g'
Check that T' is not in the past
Check that U' is a valid user and find their password P'
Let B' = T' + "$" + U' + "$"
Let g'' = base64(HMACSHA1(K, B' + P'))
Verify that g' = g''

Notes:
changing your password invalidates all existing cookies (deliberately)
cookie values must be quoted in HTTP with the current choice of separator
logouts are enforced by keeping a revocation list of cookies
the only parsing done is splitting on semicolons and converting the timestamp from hex
our base64 encoding is chosen to avoid HTTP separator characters, so the cookie need not be quoted

MDW designed the cryptography in this scheme for me.

Key Rollover

The signing key will expire after a configurable interval and a new one generated. In order to keep rollover
transparent to users, old signatures will still work up to a point. We implement this simply by keeping the most
recently expired key and checking with that if the verification with the current key fails. If the login lifetime is
shorter than the key lifetime then this won't work.

New keys are also generated when the server is restarted. No provision is made for the old cookies remaining
usable.

There is no provision for cryptographic or protocol agility; any change would need a server restart, resulting in all
existing cookies being invalidated anyway. The CGI just sees the cookie as an opaque string.

User Management

New users Database

Currently passwords are regarded as configuration rather than state. This will change.

There will be a new database, users. This will be a DB_HASH. The keys will be usernames and the values will be
the usual URL-encoded key-value pairs.

The following keys are defined:

Key Meaning

password This is the user's password. If this is not set the user has no password and can always log
in.

rights This is a comma-separated list of rights the user has. If this is not set the user has no rights
at all.

email The user's email address. This doesn't have to be set.

confirmation The most recent confirmation string.

created The timestamp that this user was created.

Undefined keys are never allowed; since some keys may have special properties, it's not appropriate to allow
arbitrary keys to be used.

The users database is created mode 0600. When we join the database environment also we specify a mode of
0600, so that log files etc remain private to the server. Also on startup all files in the database home that except
sockets have group and world permission bits cleared.

If a user has a confirmation key then they can not log in even if they have the right password.

disorder-dump will dump and restore the contents of users, and will make the dump file have mode 0600,
since it now contains passwords.

User Rights

The following user rights are defined:

Right Meaning

read Allows all read-only operations.

play Allows tracks to be played (added to the queue)

move any Allows tracks to be moved in the queue.

move mine Allows tracks to be moved in the queue if you submitted them.

move random Allows tracks to be moved in the queue if they were randomly chosen.

remove any Allows tracks to be removed from the queue.

remove mine Allows tracks to be removed from the queue if you submitted them.

remove random Allows tracks to be removed from the queue if they were randomly chosen.

scratch any Allows the playing track to be scratched.

scratch mine Allows the playing track to be scratched if you submitted it.

scratch random Allows the playing track to be scratch if it was randomly chosen.

volume Allows the volume to be changed.

admin Allows administrative commands such as reconfigure and shutdown

rescan Allows the rescan command.

register Allows the register command.

userinfo Allows fetching or editing of own user information.

prefs Allows editing of track preferences

global prefs Allows editing of global preferences

In order to implement this the command table will be extended with a column detailing which right(s) allow each
command. No command needs more than one right to run; some commands (e.g. scratch) will allow one of
several possible rights and do more specific checking themselves.

Additionally the special right all allows users who have it to do anything. The automatically created root user
has this right.

Undefined rights are not allowed (making downgrade across a change to the set of rights problematic).

Users without read aren't specifically prohibited but we don't guarantee that they will be able to to anything
useful.

Rights are implemented as as property of connections. This has implications for commands that change them.

Default Rights

Default rights for new users are configurable. If there is no override then they are all rights except admin and
register, with the move/remove/scratch rights determined as follows:

if restrict scratch then scratch mine and scratch random; otherwise scratch-any
if restrict remove then remove mine; otherwise remove any
if restrict move then no move * at all; otherwise move any

This logic is supposed to preserve pre-existing configurations. restrict will generate an error message but not
inhibit startup. In a distant future version it will be removed.

Upgrading

If the users database does not exist on startup then it is constructed from the allow, trust and restrict
settings.

The default rights for users from allow settings are computed as follows:
The www-data user is ignored (with a log message)
root always gets all
If a user is listed in trust then they get all
Otherwise you get default rights as described above

If allow or trust are found then the will provoke an error message but not inhibit startup. In a distant future
version they will be removed completely.

Special Users

If root does not exist then it is created at startup with a random password and rights set to all. The local
(UNIX) root user can extract the password directly from the database, so it need not be written to any
configuration file.

guest need not exist and is not created automatically, but is treated specially by the web interface; see below. A
common configuration would be to create it with no password and with rights of read or read and register.

disorder setup-guest (or something) will painlessly create a guest user, an option determining whether
registration is allowed or not.

New Commands

The become command will be removed.

adduser

adduser USERNAME PASSWORD

This command creates a new user. If the password is the null string then no password is set. Default rights are
set from the configuration file. Usernames containing semicolons and perhaps other characters will be prohibited.

This command requires the admin right and only works on local connections.

disorder adduser will call this command and edituser if an email address is supplied.

If the user exists the command fails even if they are an unconfirmed user (see below).

On success the response is 250.

deluser

deluser USERNAME

This command deletes a user.

This command requires the admin right and only works on local connections.

It is possible to delete unconfirmed logins.

disorder deluser will call this command.

When a user is deleted, all connections for that user have their rights set to 0, making them useless. The client
should only assume this has been done once it sees the response.

On success the response is 250.

edituser

edituser USERNAME KEY VALUE

This command edits some property of a user.

A user with the admin right may use this command with any USERNAME and KEY. A user with the userinfo right
may use this command with their own USERNAME and KEY of either password or email. No other use is
allowed.

disorder password and disorder email will call this command.

When user has their rights changed, all connections for that user have their rights modified accordingly, but the
connections are not destroyed. The client should only assume this has been done once it sees the response.

When a used has their password changed, all connections for that user are immediately disconnected. Again, the
client should only assume this has been done once it sees the response.

On success the response is 250.

userinfo

userinfo USERNAME KEY

This command retrieves some property of a user.

A user with the admin right may use this command with any USERNAME and KEY. A user with the userinfo right
may use this command with their own USERNAME and KEY of either rights or email. No other use is allowed.

disorder userinfo will call this command.

On success the response is "252 VALUE". If the key is not found the response is 555 (as for e.g. get and
get-global.)

register

register USERNAME PASSWORD EMAIL

This command creates a new user.

This command only works on local connections and requires the register right. The user is created with a
random confirmation value and won't be able to log in yet. Probably the confirmation value includes the
username to allow it to be efficiently found.

If the user already exists, but still has a confirmation value, and created indicates that the registration is
some configurable age or older, it is overwritten.

It is possible to configure an explicit list of acceptable email domains, but by default any email address is allowed.

The response is the confirmation string. The server will send an email to the email address asking the user to visit
a URL including this string to activate their login. The confirmation string is base64(USERNAME;RANDOM) (but
this a private arrangement between register and confirm and isn't guaranteed).

There will be no command-line equivalent of this command.

On success the response is "252 CONFIRMATION"

confirm

confirm CONFIRMATION

This command activates a login created with register. It can be used without logging in. The confirmation
key is removed from the relevant user and the user is then logged in and in particular may use cookie.

There will be no command-line equivalent of this command.

On success the response is "232 USERNAME".

reminder

reminder USER

This command makes the server (not the CGI) send a password reminder email to the user's registered email
address. It only works if they have an email address and a nontrivial password. Reminder emails are rate-limited
per user.

On success the response is 250.

make-cookie

make-cookie

This command generates a cookie for the logged-in user as described above. It can be used later in the cookie

command to log in.

On success the response is "252 COOKIE".

cookie

cookie COOKIE

This command verifies the cookie as described above and if it passes, the user is logged in.

On success the response is "232 USERNAME", so that the caller knows who they logged in as (so the web
interface doesn't have to know the format of the cookie).

revoke

revoke

Stores the cookie used to login in an internal revocation list, until it expires. The cookie will not be usable to login.
Only works if login was via cookie rather than user.

On success the response is 250.

users

users

Lists all known users in no particular order.

Web Interface

The web interface can now be in one of two modes. These mostly concern logging in and registration: the
enforcement of who-can-do-what policy is implemented by the server.

Guest Operation

If no cookie arrives then the web interface operates in guest mode. It logs into the server as guest with the
empty string as password (i.e. not using the cookie commands). A new menu item Login appears at the top of
the screen.

The Login page contains a username/password form and a link to a Registration page. It uses the
make-cookie command to log in and sends back the cookie to the client. If the make-cookie fails it returns to
the Login page but additionally displays an error message. On success it goes back to the front page by default,
or to the redirect URL.

The Registration page can be suppressed by not giving the guest user the register right. It contains a form
asking for username, password and email address. If the register command fails it returns to the Registration
page and additionally displays an error message. On success it displays a confirmation page explaining the email
check.

Logged-In Operation

If a cookie does arrive then the CGI logs into the server with the cookie. On error it goes straight to the Login
page, setting a redirect argument so the user ends up back in the right place when they log in.

There is an extra Account page. This contains a form for changing email address and/or password and a logout

button.

This topic: Anjou > TWikiUsers > RichardKettlewell > DisorderToDoList > DisorderCookies
History: r15 - 06 Jan 2008 - 13:20:02 - RichardKettlewell

Copyright © 2004 by the contributing authors. Send feedback.

