
Porting Berkeley UNIX® through the GNU C Compiler

John Gilmore

Grasshopper Group
San Francisco, CA, USA 94117

gnu at toad.com

ABSTRACT

We have ported UC Berkeley’s latest UNIX sources through the GNU C Compiler, a
free draft-ANSI compatible compiler written by Richard Stallman and available from the
Free Software Foundation. In the process, we made Berkeley UNIX more compatible with
the draft ANSI C standard, and tested the GNU C Compiler for its full production release.
We describe the impact of various ANSI C changes on the Berkeley UNIX sources, the
kinds of non-portable code that the conversion uncovered, and how we fixed them. We
also briefly explore some limitations in the tools used to build a UNIX system.

Introduction

The GNU C Compiler (GCC) is a complete C compiler, compatible with the draft ANSI standard,
and available in source from the Free Software Foundation (FSF). It was written by Richard Stallman in
1986 and 1987, and is (at this writing) in its 18th release. It is a major component of the GNU (‘‘GNU’s
Not UNIX’’) project, whose aim is to build a complete UNIX-like software system, available in source to any-
one who wants it. The compiler produces good code — better than most commercial compilers — and has
been ported to the Vax, MC680X0, and NS32XXX.

Berkeley UNIX, from the Computer Systems Research Group (CSRG) at the University of California
at Berkeley, had its start in the 1970’s with a prerelease UNIX Version 7, and has been improving ever since.
The current sources derive from the 1978 AT&T ‘‘32V’’ release, a V7 variant for the Vax. CSRG has pro-
duced four major releases for the Vax — 3, 4.1, 4.2, and 4.3BSD. These releases have set the standard for
high powered UNIX systems for many years, and continue to offer an improved alternative to the flat-tasting
AT&T UNIX releases.

However, Berkeley’s C compiler is based on an old version of PCC, the Portable C Compiler from
AT&T. There was little chance that anyone would provide ANSI C language extensions in this compiler, or
do significant work on optimizing the generated code. By merging the GNU C compiler into the Berkeley
release, we provided these new features to Berkeley Unix users at a low cost, while offering the GNU
project an important test case for GNU C.

Goals

The major goal for the project is to move GCC out of ‘‘beta test’’ and into ‘‘production’’ status, by
demonstrating that a successful UNIX port can be based on it.

We are also providing a better maintained compiler for Berkeley UNIX. GCC already produces better
object code then the previous compiler, has a more modern internal structure, and supports useful features
such as function prototype declarations. It is also maintained by a large collection of people around the
world, who contribute their fixes and enhancements to the master sources. Regular releases by the Free
Software Foundation encourage distribution of the improvements. In contrast, PCC is proprietary to AT&T,
and few fixes are widely distributed, except as part of infrequent and expensive AT&T releases.

-2-

We are producing a UNIX source tree which can be compiled by both the old and the new compilers.
This is partly for convenience during the port, partly in case the project suffers long delays, and partly be-
cause Berkeley UNIX also runs on the Tahoe, a fast Vax-like machine built by Computer Consoles, which
GCC does not yet support. We are avoiding the introduction of new #ifdef’s, instead rewriting the code so
that it does not depend on the features of either compiler.

We have to constantly remind ourselves to minimize the changes required. It’s too easy to get lost in
a maze of twisty UNIX code, all desperately needing improvement.

Whenever we have to make a change, we have moved in the direction of ANSI C and POSIX com-
patability.

People

The project was conceived by John Gilmore, and endorsed by Keith Bostic and Mike Karels of
CSRG, and Richard Stallman of FSF. John did the major grunt work and provided fixes to the UNIX code.
Keith and Mike provided machine resources, collaborated on major decisions, and arbitrated the style and
content of the changes to UNIX. Richard provided quick turnaround on compiler bug fixes and problem
solving. This setup worked extremely well.

We started work on 17 December 1987, and are not yet done at the time of writing (19 February
1988). About 9 days of my time, 2 of Keith’s, half a day of Mike’s, and XXX days of Richard’s have gone
into the project so far.

Working Style

Most of the work was done over networks, in a loosely coordinated style which was hard to concieve
of only a few years ago.† John worked in San Francisco, Keith in Berkeley, and Richard in Cambridge.
Keith set up an account and a copy of the source tree on vangogh, a Vax 8600 at Berkeley. John spent a few
days in front of a Sun at Berkeley getting things straight, but did most of the work by dialing in at 2400
baud from his office in San Francisco. When we modified UNIX source files, Keith checked the changes
and merged them back into the master UNIX sources on another machine at Berkeley. When we found an
apparent bug in GCC, we isolated a small excerpt or test program to demonstrate the bug, and forwarded it
to Richard by Internet electronic mail. Bug fixes came back as new GCC releases, which were FTP’d over
the Internet from MIT. Ongoing status reports, discussions, and scheduling were done by uucp and Internet
electronic mail.

At this writing, we have used four GCC releases (1.15 through 1.18). For each GCC release, we did
a ‘‘pass’’ over the UNIX source tree; one such pass included an updated source tree as well. Each GCC re-
lease was built, tested, and installed on vangogh without trouble. Then we ran make clean; make on the
source tree, and examined 500K to 800K of resulting output. Keith Bostic’s Makefiles did an excellent job
of automating this process, though we ran into some problems with the UNIX compilation model in general,
and limitations in make in particular.

ANSI Language Changes

The problems encountered during the port fell into two general categories. Some of the code was not
written portably and failed in the new environment. Other code was written portably for its time, but failed
because ANSI C has redefined parts of the language. In some cases it was hard to tell the difference; the
consensus on what is ‘‘portable code’’ changes over time, and on some points there is no agreement.

The major ANSI C problem was the generation of character constants in cpp. The traditional UNIX

C preprocessor (cpp), written by John F. Reiser, would substitute a macro’s parameters into like-named sub-
strings even inside single or double quotes in the macro definition. For example:

† Much of the free software work that is happening these days occurs in this manner, and I would like to
publicly thank the original DARPA pioneers who gave birth to this vision of wide area, computer mediated col-
laborative work.

-3-

#define CTRL(c) (’c’&037)
#define CEOF CTRL(d)

In an attempt to make things easier for tokenizing preprocessors, ANSI C has changed the rules here, and
there is in fact no way to generate a character constant containing a macro argument. (There is a way to
generate a character string, e.g. double-quoted string, but not a single-quoted character. We consider this a
bug in ANSI C.) Fixing this required altering both the macro definition and each reference to the macro:

#define CTRL(c) (c&037)
#define CEOF CTRL(’d’)

This required changes in about 10 system include files and in about 45 source modules. Many user pro-
grams turned out to depend on the undocumented CTRL macro, defined in <sys/ttychars.h>, and since all
its callers had to change, all those programs did too.

Another cpp problem involved token concatenation. No formal facilities were provided for this in
the old cpp, but many users discovered that with code like this, from the /etc/passwd scanning code:

#define EXPAND(e) passwd.pw_/**/e = tp; while (*tp++ = *cp++);
EXPAND(name);
EXPAND(passwd);

they could cause a macro argument to be concatenated with another argument, or with preexisting text, to
make a single name. In one case (phantasia), the Makefile provided half of a quoted string as a command
line #define, and the source text provided the other half! ANSI C does not allow a preprocessor to concate-
nate tokens in these ways, instead providing a newly invented ## operator, and new rules requiring the com-
piler to concatenate adjacent character strings. Again, it was impossible to write a macro that works with
both old and new compilers, and we didn’t want to uglify our code with #ifdef __STDC__; our solution
was to rewrite both the macros and all their callers, to avoid ever having to concatenate tokens:

#define EXPAND(e) passwd.e = tp; while (*tp++ = *cp++);
EXPAND(pw_name);
EXPAND(pw_passwd);

Mostly the token concatenation was used as a typing convenience, so this was not a problem. It involved
changes to five modules. We found no clean solution for phantasia; a fix will probably involve rewriting it
to do explicit string concatenations at runtime.

Changes to the scope of externals provided another set of widely scattered changes. If an external
identifier is declared from inside a function, PCC causes that declaration to be visible to the entire remain-
ing text of the source file. This also applies to functions which are implicitly declared when they first ap-
pear in an expression. This behaviour was not explicitly sanctioned by K&R, but it was condoned (pg. 206,
2nd paragraph), and many programs depended on it. ANSI C changed the scope rules to be more consis-
tent; if you declare an external identifier in a local block, the declaration has no effect outside the block.
We moved extern declarations to global scope, or added global function declarations, in 38 files to handle
this.

A number of programs used new keywords such as signed or const as identifiers. We renamed the
identifiers in 9 modules.

The Fortran libraries used a typedef name as a formal parameter to a set of functions. ANSI C has
disallowed this, since it complicates the parsing of the new prototype-style function declarations. We re-
named the parameter in 8 modules.

Three modules used a typedef with modifiers, e.g.:

typedef int CONSZ;
x = (unsigned CONSZ) y;

This has been repudiated by ANSI C. We fixed it by making the original typedef unsigned where possible,
or by creating a second typedef for ‘‘U_CONSZ’’.

-4-

Non-Portable Constructs

The worst non-portable construct we found in the UNIX sources was the use of pointers to non-mem-
bers. There was plenty of code as bad as:

int *foo;
foo->memb = 5
if (foo->humbug >= -1) bah();

and, in many cases, memb and humbug are not even members of the same struct! Such code seems to have
been written with a ‘‘BCPL’’ mentality, assuming that all pointers are really the same thing and it doesn’t
matter what their type is. Early C implementations lacked the union declarator, and did not distinguish be-
tween the members of different structures. Exploiting this has been considered bad practice for years, and
lint checks for it, though many UNIX compilers do not. We found a lot of it in old code, though newer code
did not lack for examples either. Fixing this problem caused the most work, because we had to figure out
what each untyped or mistyped pointer was really being used for, then fix its type, and whatever references
to it were inconsistent with that type. We changed 5 modules due to this. One program, efl, would have re-
quired so much work that we abandoned it, since we could not find anyone using it.

Another problem was caused by existing uses of cpp on non-C sources. Various assembler language
modules were being preprocessed by cpp, probably because there is no standard macro assembler for UNIX.
These modules are carefully arranged to avoid confusing the old cpp; for example, assembler language
comments are introduced by #, but indented so that cpp will not treat them as control lines. ANSI cpp’s
handle white space on both sides of the ‘‘#’’, so indentation no longer hides these comments. Also, the
ANSI rules to require the preprocessor to keep track of which material is inside single and double quotes
and which is outside; the old cpp terminated a character string or constant at the next unescaped newline.
Vax assembler language uses unmatched quotes when specifying single ASCII characters, such as in imme-
diate operands. This causes an ANSI cpp to stop processing # directives at that point, until it finds another
unmatched quote. We chose to alter the assembler modules to avoid stumbling over these features in ANSI
C preprocessors, without fixing the larger problem of using a C-specific preprocessor on non-C text.

In addition to embedded C preprocessor statements in assembler sources, we had to deal with asm()
constructs in C source. Some system-dependent routines were written in C with intermixed assembler
code, producing a mess when compiled with anything but the original compiler. Other routines, such as
compress, drop in an asm() here or there as an optimization. Still more modules, including the kernel, run a
sed script over the assembler code generated by the C compiler, before assembling and linking it. There is
no general solution to these problems. GCC has added an asm() facility that is independent of the com-
piler’s register allocation strategy, but programs using this are incompatible with the old C compiler. We
are investigating a possible fix involving changing all these places to use e.g. #include <machine/in-
line.h> which, in GCC, would define inline code containing asm()s, while in PCC, declarations of (slower)
external functions would be generated.

Troff used multi-character constants in its font tables; we fixed it with a macro for building an int
out of two characters. A Fortran library module used the character constant ’EOF’, presumably a typo for
EOF; and rogue defined the character ’300’ as a possible command letter. While ANSI C permits multiple
character constants, they are implementation defined, and GCC wisely defines them to be invalid (as the
standard should have done).

Some programs tried to declare functions or variables, omitting both type and storage class. This
usage is not even valid in K&R, though PCC accepts it. We fixed this in about 15 modules, by adding
‘‘int’’ to the declarations. There were two other modules where this check uncovered inadvertent use of
‘‘;’’ in a declaration list where ‘‘,’’ was intended.

GCC provides better error checking in a few ways, and caught a number of bugs caused by misunder-
stood sign extension. It warns ‘‘comparison is always 0 due to limited range of data type’’ for constructs
like:

char c;
if (c == 0x80) foo();

If a signed character contains the bit pattern 0x80, using it in an expression causes it to be sign-extended to

-5-

0xFFFFFF80, which does not equal 0x00000080. Bugs of this sort were fixed, typically by casting the
0x80 to (char), in 5 modules.

Changes to the rules for parsing declarations made us fix two modules where the last declaration in
a struct was immediately followed by a closing brace, without a semicolon. Three more modules needed
changes because the rules for where braces are required in struct or array initializers have changed. Four
programs defined a struct foo and then referenced it as a union foo, or vice verse. Two programs declared
register struct foo bar; and then took bar’s address, which is not allowed for register variables!

Thirteen programs had miscellaneous pointer usage bugs fixed. Two more were comparing pointers
to -1; these were changed to use zero as a flag value instead.

In ANSI C, local variables in use at a setjmp() are no longer guaranteed to be preserved when a
longjmp() occurs, unless they are declared volatile. This is not a problem for the Vax port, since the Vax
longjmp() will continue to restore the registers, but gcc warns about this situation, since code that assumes
restoration is not portable. We have not yet worked on fixes for this.

Five or ten other miscellaneous bugs were caught and fixed.

Least portable UNIX code

The process of porting software inevitably uncovers a few files that cause a disproportionate share of
problems. For our port, the clear winner is efl, the Extended Fortran Language, by Stu Feldman. It defines
‘‘typedef int * ptr;’’ in a header file, and then uses a ‘‘ptr’’ to point to anything. GCC produced 1600 lines
of errors messages on this program alone, and three modules of it caused compiler core dumps. We ended
up deciding to abandon support for it rather than attempt to clean it up.

A runner-up is pcc, the Portable C Compiler itself, by Steven C. Johnson. It caused GCC to core-
dump twice, tickled another GCC parsing bug, and contained the modified typedef and sign extension prob-
lems mentioned above.

Third place goes to monop, the Monopoly† game, by Ken Arnold. This program used a variety of
typed pointers, but the main pointer to a set of structs was declared as a char *. Another part of the code
initialized an array of struct pointers with integer values, then a small loop at the beginning of the game
would read out these integers and replace them with corresponding ‘‘real’’ struct pointers. It took about
two days to face up to the job and about a day to clean it up.

Honorable mention for silly mistakes goes to the indent program, by someone at the University of
Illinois. It contain the only instance of a + = b (with a space between + and =), and was the only module to
terminate its #include directives with a semicolon. It also contained a comparison between a character and
the value 0200, a value that a signed 8-bit char can never hold.

Results

We are pleased with the results so far. Most of the UNIX code compiled without problems, and the
parts which we have executed are free from code generation bugs. The worst of the ANSI C changes only
required roughly fifty modules to be changed, and there were only two problems of this magnitude. A total
of twenty bugs in gcc were located so far, and most of them are now fixed. We expected several times this
many bugs; the compiler is in better shape than any of us expected.

Many minor type problems and ‘‘nit’’ incompatabilities with ANSI C have been removed from the
UNIX sources.

Future Results

(This section will move to Results for the final paper.)

We expect that the size of the UNIX binaries will be significantly less than with the previous compiler,
but at the current stage of the project we can’t easily confirm the expectation.

When the system compiled with GCC is in everyday use at Berkeley, GCC will be relabeled as a full
production-quality compiler, which will encourage its wider use.

† Trademark of Parker Brothers

-6-

Non-Results

We have not attempted to make Berkeley UNIX fully ANSI C compliant. In particular, we have re-
tained preprocessor comments (#endif FOO) as well as machine-specific #define’s (#ifdef vax). GCC sup-
ports these features without trouble, even though ANSI C does not.

The UNIX kernel has not yet been ported to gcc. Other people are working on this, compiling one
module at a time and running it for a while before moving on to the next. We will merge their work with
ours once we have the rest of the system in a stable state.

Pieces of the Portable C Compiler are still being used inside lint, f77, and pc. Eventually someone
will write Fortran and Pascal front-ends for gcc; this has already been done for C++. So far nobody has
created a GNU lint, but it is an obvious project.

CSRG has ported Berkeley UNIX to the Tahoe, a fast Vax-like machine built by Computer Consoles
and resold by Harris and others. We are looking for someone to do a Tahoe port of gcc, to replace the PCC
supplied by CCI.

Problems in Building UNIX

UNIX compilers traditionally look in certain global places in the file system for their libraries, include
files, etc. This is a problem when cross-compiling, or when building a new UNIX release (which almost
amounts to the same thing). While it is possible to provide a new default directory for #include files, if a
source program #includes a file that is not in the cross-compilation include files, the C compiler will erro-
neously use the one from /usr/include. There should be a switch that turns off all the built-in include file
and library pathnames, and only uses those specified on the compiler’s command line.

However, there is still the problem of getting those switches to the compiler’s command line. Make
is a great tool for dealing with one directory’s worth of files, but as UNIX has evolved, make has not kept up.
Indeed, it has fallen behind; Makefiles that worked perfectly well five years ago will no longer work be-
cause each manufacturer (AT&T especially) has hacked up their make to include harmful, gratuitous, and
mutually incompatible changes. The result is that a Makefile that works on your system is unlikely to work
on your neighbor’s system, unless they are from the same manufacturer, and you happen to use the same lo-
gin shell.

Make works poorly on nested directory structures, too. As an example, we could find no way to
change ‘‘cc’’ to ‘‘gcc’’ in all the Makefiles used to build Berkeley UNIX (short of text-editing them all). In a
single directory, you can say make CC=gcc, but this change is not propagated to subdirectories. You can
manually propagate that change one level by saying make CC=gcc MFLAGS=’CC=gcc’ but that only goes
one level (at least in Berkeley’s version of make). We ended up putting a copy of gcc in a private bin direc-
tory, named cc, and putting that directory on the front of the search path. (When we later wanted to over-
ride CFLAGS as well, ˜/bin/cc became a shell script that invokes gcc -W).

Another problem with make is that even if it was instructed to ignore errors (with -i or -k), it exits if it
can’t locate a file that something else depends upon. This has the effect of ‘‘pruning’’ a potentially large
section of the source hierarchy, and the only warning is an unobtrusive message buried among 500K of
other output.

Of course, if someone was to fix these bugs in make, they would be creating yet another incompatible
version. I have been watching the papers on the ‘‘new makes’’ and so far there doesn’t seem to be one that
handles deeply nested source trees in a clean and consistent fashion, or is otherwise so much better than
make that it’s worth the effort to switch. I think it is time to look for a completely new paradigm for soft-
ware compilation control. I don’t have any major insights on where to go from here, but it is clear to me
that make and its derivatives have reached their useful limits.

Availability

These changes will be available to recipients of Berkeley’s next software distribution, whenever that
is. We will also make diffs available to others involved in porting UNIX to ANSI C. We suspect that most
of the problems we solved have already been handled in one or another UNIX port, but the work had to be
duplicated because either it was not sent back to Berkeley or AT&T, or the changes were not accepted.

-7-

(AT&T has a history of pretending that UNIX bugs do not exist, and Berkeley has limited manpower).

Future Work

Future projects include building a complete set of ANSI C and POSIX compatible include files and
libraries (including function prototypes), and converting the existing sources to use them. An eventual goal
is to produce a fully standard-conforming UNIX system — not only in the interface provided to users, but
with sources which will compile and run on any standard-conforming compiler and libraries.

The success of this collaboration between GNU and CSRG has encouraged further cooperation.
Both parties feel that AT&T licensing is a problem; most recipients of CSRG releases have old UNIX li-
censes, and are unwilling to upgrade to more expensive and more onerous AT&T licenses. However, new
AT&T releases include some features which would be useful in Berkeley UNIX. The GNU project is work-
ing to provide early reimplementations of these features, such as improved shells and ‘‘make’’ commands.
In return, CSRG is working to release software to the public which has previously been held to be ‘‘ UNIX

licensed’’ even though it was not derived from AT&T code, such as the implementation of TCP/IP, and
many of the Berkeley utility programs.

References

Draft Proposed American National Standard — Programming Language C, ANSI X3.J11, draft of October
1, 1986 (update for new draft when out). CBEMA, 311 First Street NW #1500, Washington DC 20001.

4.3BSD Manual Set, Computer Systems Research Group, University of California at Berkeley.

Fowler, Glenn S., ‘‘The Fourth Generation Make’’, Usenix conference proceedings, Summer 1985, page
159. (More references on ‘‘make’’ are provided in this paper.)

Hume, Andrew, ‘‘Mk: a successor to make’’, Usenix conference proceedings, Summer 1987, page 445.

Kernighan, Brian W. and Ritchie, Dennis M., ‘‘The C Programming Language’’, Prentice-Hall, 1978.

