
Requirements
Left To Implement
Design

Extended Plugin Interface
Pausible Player for Libao Players

Overview
Libao Driver
Speaker Process
Player Plugin
Main Server
MCDP
Alternative Design
To Do

Future Developments
Gap Elimination
Network Broadcast

Network Protocol
Timing

Requirements
The following new DisOrder features are desirable:

pausing tracks. This should have minimum latency and should allow the sound device to be closed while
paused so that other things can use it.
eliminating the gap between tracks
broadcasting over a network

It should remain possible to use unpausible players, bizarro lash-ups, etc.

Network broadcast (multicast?) is mentioned only as something we don't want to rule out in this design, rather
than something that is ruled in.

Left To Implement
pausing

for pausable standalone (implemented, untested)
pre-decoding
test ao driver against mpg321; see if --signal required
docs (doing well)
general testing
mcdp pre-release
release

Design

Extended Plugin Interface

unsigned long disorder_player_type;

#define DISORDER_PLAYER_STANDALONE 0x00000000
/* this player plays sound directly */



#define DISORDER_PLAYER_PAUSES    0x00000001
/* standalone player that supports pausing */

#define DISORDER_PLAYER_RAW        0x00000002
/* player that sends raw samples to $DISORDER_RAW_FD */

#define DISORDER_PLAYER_TYPEMASK   0x0000000f
/* mask for player types */

#define DISORDER_PLAYER_PREFORK    0x00000010
/* call prefork function */

void *disorder_play_prefork(const char *track);
/* called outside the fork.  Should not block.  Returns a null pointer on error. */

/* If _play_prefork is called then its return value is used
 * as the =data= argument to the following functions.  Otherwise
 * the value of =data= argument is indeterminate and must not
 * be used. */

void disorder_play_track(const char *const *parameters,
                         int nparameters,
                         const char *path,
                         const char *track,
                         void *data);
/* Called to play a track.  Should either =exec= or only return when the track
 * has finished.  Should not call =exit= (except after a succesful =exec=).
 * Allowed to call =_exit=. */

int disorder_play_pause(long *playedp, void *data);
/* Pauses the playing track.  If the track can be paused returns 0 and
 * stores the number of seconds so far played via PLAYEDP, or sets it to
 * -1 if this is not known.  If the track cannot be paused then returns -1.
 * Should not block.
 */

void disorder_play_resume(long played, void *data);
/* Restarts play after a pause.  PLAYED is the value returned from
 * the original pause operation.  Should not block. */

void disorder_play_cleanup(void *data);
/* called to clean up DATA.  Should not block. */

The playing process now looks like:
call _play_prefork if required
call _play_track inside a subprocess
possibly call _play_pause and _play_resume some number of times
possibly send a SIGINT (or as configured) to the player
call _play_cleanup after the subprocess has terminated

For a standalone player the _play_track function should just play the track. Ideally if the audio device is in use
it should retry it, but only for a few seconds.

A raw interface player should write the sample format and then raw samples to the FD specified by the
environment variable DISORDER_RAW_FD. It need not support pausing as that is handled by the calling process.



The minimum old standalone players need to do is define disorder_player_type as
DISORDER_PLAYER_STANDALONE and support but ignore the extra data argument to _play_track.

Pausible Player for Libao Players

Overview

This scheme consists of the following components:
a new libao driver, which existing players such as ogg123 use
a speaker process, which actually plays sounds
a new player plugin

Libao Driver

This is very similar to the existing raw driver except that it will write the sample format and then the sample data
down an inherited fd that is connected to the speaker process.

Speaker Process

This process is connected to (and started by) the main DisOrder server. There is a datagram UNIX domain socket
between them, connnected to the standard input and standard output of the speaker process.

The following messages are sent to the speaker:
prepare(ID) - get ready to play ID. Accompanied by a file descriptor from which to read sample data.
play(ID) - play ID. If the track has not been prepared then it will be accompanied by a a file descriptor
as above.
pause() - pause the current track. This will produce either a paused or pausefailed response. Only
allowed if there is a track playing.
resume() - resume the current track. The speaker process keeps track of the number of seconds played
so it need not be included in the command. Only allowed if there is a track playing and it is paused.
cancel(ID) - cancel a track (possibly the current track). Only allowed for known ID values. It is allowed
to cancel a paused track. The next track played does not become paused.
reload() - re-read configuration file

The following messages are sent from the speaker:
paused(ID, PLAYED) - pause succeeded, PLAYED seconds into ID
finished(ID) - ID finished
failed(ID) - failed to play or prepare ID

When the connection to the main server is closed the speaker process terminates any outstanding players and
then exits.

The audio device shall only be held open when actually playing from a raw-interface player, i.e. not when paused,
not when idle, and not when using a standalone player.

The speaker process is free to buffer as much as it likes but it may be desirable to limit the rate at which it feeds
data to the hardware, if possible, to minimize the latency of cancels.

The byte format of the speaker commands is regarded as an implementation detail: they are private to DisOrder.

Player Plugin

The new player plugin, execraw, is identical to the exec plugin but declares support for the raw interface. (A



shellraw plugin could just as easily be made.)

Main Server

The main DisOrder? server starts the speaker process during its own startup and propogates reconfigure
requests to it via the reload command.

The main server needs to gain the ability to pause tracks and to keep timing details sane while doing this. This
has yet to be designed. Need to review existing code.

XXX

MCDP

Matthew's CD player would presumably issue the CDROMPAUSE and CDROMRESUME ioctls. It would have to
declare DISORDER_PLAYER_PAUSES and might want to use the new _prefork mechanism.

Alternative Design

An alternative design would be to move most of the logic of the speaker into the main server, and write to the
audio device inside a dedicated thread. The thread would receive open, close and play commands on a queue
controlled by a mutex and a condvar, and would block all signals.

This eliminates most of the IPC but introduces a new dependency into DisOrder, i.e. thread support. I'm slightly
loathe to do this. Though it is worth noting that the Mac OS X libao driver starts a thread anyway, so we cannot
completely avoid it.

Threading and garbage collection are a poor mix, too: if the player thread never calls the allocator then the
garbage collector cannnot run, if it does call it then it may be blocked for a long period in collection.

Even threading could be eliminated if writing audio samples could be guaranteed not to block significantly. This
might be a platform-specific question however.

To Do

It would be convenient to allow multiple tracks to start decoding early. But the order in which things contact the
server might not be the order in which they are to be played, and not all things might be played at all. The cancel
operation obviously fits here but perhaps we want an additional operation to actually start playing a track which
has already started decoding.

A thing worth thinking about is that it might be appropriate to start some kinds of player from the speaker process.
This would eliminate the need for an id field in play commands, as the speaker would know which track it was
from the FD.

If all players are started as a subprocess of the speaker then the logic looks like this:

for a sample-generating player:
start the player at any time before the track is due to be played
don't read from the FD until it is needed
if the track is cancelled then just kill the process and dump the FD
when playing samples we must retry for up to a few seconds if the audio device is busy

for a standalone player:
close the audio device before starting it
only start the player when it is actually needed



the player must retry for up to a few seconds if the audio device is still busy

This implies a protocol between the main disorder server and the speaker. The operations would be:
prepare to play some track
start playing a track (prepared or not)
pause
resume
cancel a track (possibly the currently playing one)

Future Developments

Gap Elimination

The lower bound on the inter-track gap will already be pretty short with this logic.

With the above in place we can completely eliminate it however by starting a new track shortly before the old one
ends.

Network Broadcast

This necessarily requires that all players send digital audio to a single place which can then redistribute it over the
network. The speaker process is in exactly the right place to do this.

Network Protocol

The network protocol needs to be stable as not all endpoints may be upgraded simultaneously - they may be in
different administrative domains and may be widely separated.

Multicast should work. This implies a connectionless-capable protocol. This would be convenient in any case.

It would be preferrable to have a single sample format rather than requiring endpoints to know how to cope with
multiple sample formats. I note in passing that the Mac OS X libao driver only groks 44.1KHz.

Resampling in the speaker process does not sound much like fun, though on modern hardware it should be quite
possible to do it faster than real time.

Timing

It may be that multiple endpoints are located very near one another. In that case it is desirable that they are as
closely synchronized as possible. This means both getting them into step, which might reasonably require manual
attention, and keeping them in step, which ought not to.

Suppose each frame contains a timestamp calculated by the network version of the speaker process. This would
be calculated from the start of the track, or the point at which it was unpaused, plus the number of samples
multiplied by the sample rate. This gives a target time to play that frame. The speaker should avoid sending out a
frame much before its target time.

Each endpoint could then have a delta to add to this time, and play the frame as close as possible to the result.
This delta effectively encompasses both the clock inaccuracy of the host and the latency of its sound device.

Adding a new endpoint should be a matter merely of tuning its own delta, though it might sometimes involve
upping that of all endpoints a bit.

Another approach would be to keep the amount of data in flight to an absolute minimum and just have a delay in
each endpoint. The tuning step would be much the same. This is simpler and would be less vulnerable to clock



jitter, but would be more vulnerable to variable network conditions.

It might be best to support both approaches and allow the operators to choose between them.

-- RichardKettlewell - 30 May 2005

This topic: Anjou > WebHome > ComputingDesigns > DisorderPlayer
History: r8 - 09 Oct 2005 - 11:40:13 - RichardKettlewell

Copyright © 2004 by the contributing authors. Send feedback.


